Left Termination of the query pattern insert_in_3(g, g, a) w.r.t. the given Prolog program could successfully be proven:



Prolog
  ↳ PrologToPiTRSProof

Clauses:

insert(X, void, tree(X, void, void)).
insert(X, tree(X, Left, Right), tree(X, Left, Right)).
insert(X, tree(Y, Left, Right), tree(Y, Left1, Right)) :- ','(less(X, Y), insert(X, Left, Left1)).
insert(X, tree(Y, Left, Right), tree(Y, Left, Right1)) :- ','(less(Y, X), insert(X, Right, Right1)).
less(0, s(X)).
less(s(X), s(Y)) :- less(X, Y).

Queries:

insert(g,g,a).

We use the technique of [30].Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

insert_in(X, tree(Y, Left, Right), tree(Y, Left, Right1)) → U3(X, Y, Left, Right, Right1, less_in(Y, X))
less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U3(X, Y, Left, Right, Right1, less_out(Y, X)) → U4(X, Y, Left, Right, Right1, insert_in(X, Right, Right1))
insert_in(X, tree(Y, Left, Right), tree(Y, Left1, Right)) → U1(X, Y, Left, Right, Left1, less_in(X, Y))
U1(X, Y, Left, Right, Left1, less_out(X, Y)) → U2(X, Y, Left, Right, Left1, insert_in(X, Left, Left1))
insert_in(X, tree(X, Left, Right), tree(X, Left, Right)) → insert_out(X, tree(X, Left, Right), tree(X, Left, Right))
insert_in(X, void, tree(X, void, void)) → insert_out(X, void, tree(X, void, void))
U2(X, Y, Left, Right, Left1, insert_out(X, Left, Left1)) → insert_out(X, tree(Y, Left, Right), tree(Y, Left1, Right))
U4(X, Y, Left, Right, Right1, insert_out(X, Right, Right1)) → insert_out(X, tree(Y, Left, Right), tree(Y, Left, Right1))

The argument filtering Pi contains the following mapping:
insert_in(x1, x2, x3)  =  insert_in(x1, x2)
tree(x1, x2, x3)  =  tree(x1, x2, x3)
U3(x1, x2, x3, x4, x5, x6)  =  U3(x1, x2, x3, x4, x6)
less_in(x1, x2)  =  less_in(x1, x2)
s(x1)  =  s(x1)
U5(x1, x2, x3)  =  U5(x3)
0  =  0
less_out(x1, x2)  =  less_out
U4(x1, x2, x3, x4, x5, x6)  =  U4(x2, x3, x6)
U1(x1, x2, x3, x4, x5, x6)  =  U1(x1, x2, x3, x4, x6)
U2(x1, x2, x3, x4, x5, x6)  =  U2(x2, x4, x6)
insert_out(x1, x2, x3)  =  insert_out(x3)
void  =  void

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog



↳ Prolog
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

insert_in(X, tree(Y, Left, Right), tree(Y, Left, Right1)) → U3(X, Y, Left, Right, Right1, less_in(Y, X))
less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U3(X, Y, Left, Right, Right1, less_out(Y, X)) → U4(X, Y, Left, Right, Right1, insert_in(X, Right, Right1))
insert_in(X, tree(Y, Left, Right), tree(Y, Left1, Right)) → U1(X, Y, Left, Right, Left1, less_in(X, Y))
U1(X, Y, Left, Right, Left1, less_out(X, Y)) → U2(X, Y, Left, Right, Left1, insert_in(X, Left, Left1))
insert_in(X, tree(X, Left, Right), tree(X, Left, Right)) → insert_out(X, tree(X, Left, Right), tree(X, Left, Right))
insert_in(X, void, tree(X, void, void)) → insert_out(X, void, tree(X, void, void))
U2(X, Y, Left, Right, Left1, insert_out(X, Left, Left1)) → insert_out(X, tree(Y, Left, Right), tree(Y, Left1, Right))
U4(X, Y, Left, Right, Right1, insert_out(X, Right, Right1)) → insert_out(X, tree(Y, Left, Right), tree(Y, Left, Right1))

The argument filtering Pi contains the following mapping:
insert_in(x1, x2, x3)  =  insert_in(x1, x2)
tree(x1, x2, x3)  =  tree(x1, x2, x3)
U3(x1, x2, x3, x4, x5, x6)  =  U3(x1, x2, x3, x4, x6)
less_in(x1, x2)  =  less_in(x1, x2)
s(x1)  =  s(x1)
U5(x1, x2, x3)  =  U5(x3)
0  =  0
less_out(x1, x2)  =  less_out
U4(x1, x2, x3, x4, x5, x6)  =  U4(x2, x3, x6)
U1(x1, x2, x3, x4, x5, x6)  =  U1(x1, x2, x3, x4, x6)
U2(x1, x2, x3, x4, x5, x6)  =  U2(x2, x4, x6)
insert_out(x1, x2, x3)  =  insert_out(x3)
void  =  void


Using Dependency Pairs [1,30] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

INSERT_IN(X, tree(Y, Left, Right), tree(Y, Left, Right1)) → U31(X, Y, Left, Right, Right1, less_in(Y, X))
INSERT_IN(X, tree(Y, Left, Right), tree(Y, Left, Right1)) → LESS_IN(Y, X)
LESS_IN(s(X), s(Y)) → U51(X, Y, less_in(X, Y))
LESS_IN(s(X), s(Y)) → LESS_IN(X, Y)
U31(X, Y, Left, Right, Right1, less_out(Y, X)) → U41(X, Y, Left, Right, Right1, insert_in(X, Right, Right1))
U31(X, Y, Left, Right, Right1, less_out(Y, X)) → INSERT_IN(X, Right, Right1)
INSERT_IN(X, tree(Y, Left, Right), tree(Y, Left1, Right)) → U11(X, Y, Left, Right, Left1, less_in(X, Y))
INSERT_IN(X, tree(Y, Left, Right), tree(Y, Left1, Right)) → LESS_IN(X, Y)
U11(X, Y, Left, Right, Left1, less_out(X, Y)) → U21(X, Y, Left, Right, Left1, insert_in(X, Left, Left1))
U11(X, Y, Left, Right, Left1, less_out(X, Y)) → INSERT_IN(X, Left, Left1)

The TRS R consists of the following rules:

insert_in(X, tree(Y, Left, Right), tree(Y, Left, Right1)) → U3(X, Y, Left, Right, Right1, less_in(Y, X))
less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U3(X, Y, Left, Right, Right1, less_out(Y, X)) → U4(X, Y, Left, Right, Right1, insert_in(X, Right, Right1))
insert_in(X, tree(Y, Left, Right), tree(Y, Left1, Right)) → U1(X, Y, Left, Right, Left1, less_in(X, Y))
U1(X, Y, Left, Right, Left1, less_out(X, Y)) → U2(X, Y, Left, Right, Left1, insert_in(X, Left, Left1))
insert_in(X, tree(X, Left, Right), tree(X, Left, Right)) → insert_out(X, tree(X, Left, Right), tree(X, Left, Right))
insert_in(X, void, tree(X, void, void)) → insert_out(X, void, tree(X, void, void))
U2(X, Y, Left, Right, Left1, insert_out(X, Left, Left1)) → insert_out(X, tree(Y, Left, Right), tree(Y, Left1, Right))
U4(X, Y, Left, Right, Right1, insert_out(X, Right, Right1)) → insert_out(X, tree(Y, Left, Right), tree(Y, Left, Right1))

The argument filtering Pi contains the following mapping:
insert_in(x1, x2, x3)  =  insert_in(x1, x2)
tree(x1, x2, x3)  =  tree(x1, x2, x3)
U3(x1, x2, x3, x4, x5, x6)  =  U3(x1, x2, x3, x4, x6)
less_in(x1, x2)  =  less_in(x1, x2)
s(x1)  =  s(x1)
U5(x1, x2, x3)  =  U5(x3)
0  =  0
less_out(x1, x2)  =  less_out
U4(x1, x2, x3, x4, x5, x6)  =  U4(x2, x3, x6)
U1(x1, x2, x3, x4, x5, x6)  =  U1(x1, x2, x3, x4, x6)
U2(x1, x2, x3, x4, x5, x6)  =  U2(x2, x4, x6)
insert_out(x1, x2, x3)  =  insert_out(x3)
void  =  void
U51(x1, x2, x3)  =  U51(x3)
LESS_IN(x1, x2)  =  LESS_IN(x1, x2)
U21(x1, x2, x3, x4, x5, x6)  =  U21(x2, x4, x6)
U41(x1, x2, x3, x4, x5, x6)  =  U41(x2, x3, x6)
INSERT_IN(x1, x2, x3)  =  INSERT_IN(x1, x2)
U11(x1, x2, x3, x4, x5, x6)  =  U11(x1, x2, x3, x4, x6)
U31(x1, x2, x3, x4, x5, x6)  =  U31(x1, x2, x3, x4, x6)

We have to consider all (P,R,Pi)-chains

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof

Pi DP problem:
The TRS P consists of the following rules:

INSERT_IN(X, tree(Y, Left, Right), tree(Y, Left, Right1)) → U31(X, Y, Left, Right, Right1, less_in(Y, X))
INSERT_IN(X, tree(Y, Left, Right), tree(Y, Left, Right1)) → LESS_IN(Y, X)
LESS_IN(s(X), s(Y)) → U51(X, Y, less_in(X, Y))
LESS_IN(s(X), s(Y)) → LESS_IN(X, Y)
U31(X, Y, Left, Right, Right1, less_out(Y, X)) → U41(X, Y, Left, Right, Right1, insert_in(X, Right, Right1))
U31(X, Y, Left, Right, Right1, less_out(Y, X)) → INSERT_IN(X, Right, Right1)
INSERT_IN(X, tree(Y, Left, Right), tree(Y, Left1, Right)) → U11(X, Y, Left, Right, Left1, less_in(X, Y))
INSERT_IN(X, tree(Y, Left, Right), tree(Y, Left1, Right)) → LESS_IN(X, Y)
U11(X, Y, Left, Right, Left1, less_out(X, Y)) → U21(X, Y, Left, Right, Left1, insert_in(X, Left, Left1))
U11(X, Y, Left, Right, Left1, less_out(X, Y)) → INSERT_IN(X, Left, Left1)

The TRS R consists of the following rules:

insert_in(X, tree(Y, Left, Right), tree(Y, Left, Right1)) → U3(X, Y, Left, Right, Right1, less_in(Y, X))
less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U3(X, Y, Left, Right, Right1, less_out(Y, X)) → U4(X, Y, Left, Right, Right1, insert_in(X, Right, Right1))
insert_in(X, tree(Y, Left, Right), tree(Y, Left1, Right)) → U1(X, Y, Left, Right, Left1, less_in(X, Y))
U1(X, Y, Left, Right, Left1, less_out(X, Y)) → U2(X, Y, Left, Right, Left1, insert_in(X, Left, Left1))
insert_in(X, tree(X, Left, Right), tree(X, Left, Right)) → insert_out(X, tree(X, Left, Right), tree(X, Left, Right))
insert_in(X, void, tree(X, void, void)) → insert_out(X, void, tree(X, void, void))
U2(X, Y, Left, Right, Left1, insert_out(X, Left, Left1)) → insert_out(X, tree(Y, Left, Right), tree(Y, Left1, Right))
U4(X, Y, Left, Right, Right1, insert_out(X, Right, Right1)) → insert_out(X, tree(Y, Left, Right), tree(Y, Left, Right1))

The argument filtering Pi contains the following mapping:
insert_in(x1, x2, x3)  =  insert_in(x1, x2)
tree(x1, x2, x3)  =  tree(x1, x2, x3)
U3(x1, x2, x3, x4, x5, x6)  =  U3(x1, x2, x3, x4, x6)
less_in(x1, x2)  =  less_in(x1, x2)
s(x1)  =  s(x1)
U5(x1, x2, x3)  =  U5(x3)
0  =  0
less_out(x1, x2)  =  less_out
U4(x1, x2, x3, x4, x5, x6)  =  U4(x2, x3, x6)
U1(x1, x2, x3, x4, x5, x6)  =  U1(x1, x2, x3, x4, x6)
U2(x1, x2, x3, x4, x5, x6)  =  U2(x2, x4, x6)
insert_out(x1, x2, x3)  =  insert_out(x3)
void  =  void
U51(x1, x2, x3)  =  U51(x3)
LESS_IN(x1, x2)  =  LESS_IN(x1, x2)
U21(x1, x2, x3, x4, x5, x6)  =  U21(x2, x4, x6)
U41(x1, x2, x3, x4, x5, x6)  =  U41(x2, x3, x6)
INSERT_IN(x1, x2, x3)  =  INSERT_IN(x1, x2)
U11(x1, x2, x3, x4, x5, x6)  =  U11(x1, x2, x3, x4, x6)
U31(x1, x2, x3, x4, x5, x6)  =  U31(x1, x2, x3, x4, x6)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph [30] contains 2 SCCs with 5 less nodes.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
PiDP
                ↳ UsableRulesProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

LESS_IN(s(X), s(Y)) → LESS_IN(X, Y)

The TRS R consists of the following rules:

insert_in(X, tree(Y, Left, Right), tree(Y, Left, Right1)) → U3(X, Y, Left, Right, Right1, less_in(Y, X))
less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U3(X, Y, Left, Right, Right1, less_out(Y, X)) → U4(X, Y, Left, Right, Right1, insert_in(X, Right, Right1))
insert_in(X, tree(Y, Left, Right), tree(Y, Left1, Right)) → U1(X, Y, Left, Right, Left1, less_in(X, Y))
U1(X, Y, Left, Right, Left1, less_out(X, Y)) → U2(X, Y, Left, Right, Left1, insert_in(X, Left, Left1))
insert_in(X, tree(X, Left, Right), tree(X, Left, Right)) → insert_out(X, tree(X, Left, Right), tree(X, Left, Right))
insert_in(X, void, tree(X, void, void)) → insert_out(X, void, tree(X, void, void))
U2(X, Y, Left, Right, Left1, insert_out(X, Left, Left1)) → insert_out(X, tree(Y, Left, Right), tree(Y, Left1, Right))
U4(X, Y, Left, Right, Right1, insert_out(X, Right, Right1)) → insert_out(X, tree(Y, Left, Right), tree(Y, Left, Right1))

The argument filtering Pi contains the following mapping:
insert_in(x1, x2, x3)  =  insert_in(x1, x2)
tree(x1, x2, x3)  =  tree(x1, x2, x3)
U3(x1, x2, x3, x4, x5, x6)  =  U3(x1, x2, x3, x4, x6)
less_in(x1, x2)  =  less_in(x1, x2)
s(x1)  =  s(x1)
U5(x1, x2, x3)  =  U5(x3)
0  =  0
less_out(x1, x2)  =  less_out
U4(x1, x2, x3, x4, x5, x6)  =  U4(x2, x3, x6)
U1(x1, x2, x3, x4, x5, x6)  =  U1(x1, x2, x3, x4, x6)
U2(x1, x2, x3, x4, x5, x6)  =  U2(x2, x4, x6)
insert_out(x1, x2, x3)  =  insert_out(x3)
void  =  void
LESS_IN(x1, x2)  =  LESS_IN(x1, x2)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

LESS_IN(s(X), s(Y)) → LESS_IN(X, Y)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

LESS_IN(s(X), s(Y)) → LESS_IN(X, Y)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
PiDP
                ↳ UsableRulesProof

Pi DP problem:
The TRS P consists of the following rules:

INSERT_IN(X, tree(Y, Left, Right), tree(Y, Left, Right1)) → U31(X, Y, Left, Right, Right1, less_in(Y, X))
U31(X, Y, Left, Right, Right1, less_out(Y, X)) → INSERT_IN(X, Right, Right1)
INSERT_IN(X, tree(Y, Left, Right), tree(Y, Left1, Right)) → U11(X, Y, Left, Right, Left1, less_in(X, Y))
U11(X, Y, Left, Right, Left1, less_out(X, Y)) → INSERT_IN(X, Left, Left1)

The TRS R consists of the following rules:

insert_in(X, tree(Y, Left, Right), tree(Y, Left, Right1)) → U3(X, Y, Left, Right, Right1, less_in(Y, X))
less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U3(X, Y, Left, Right, Right1, less_out(Y, X)) → U4(X, Y, Left, Right, Right1, insert_in(X, Right, Right1))
insert_in(X, tree(Y, Left, Right), tree(Y, Left1, Right)) → U1(X, Y, Left, Right, Left1, less_in(X, Y))
U1(X, Y, Left, Right, Left1, less_out(X, Y)) → U2(X, Y, Left, Right, Left1, insert_in(X, Left, Left1))
insert_in(X, tree(X, Left, Right), tree(X, Left, Right)) → insert_out(X, tree(X, Left, Right), tree(X, Left, Right))
insert_in(X, void, tree(X, void, void)) → insert_out(X, void, tree(X, void, void))
U2(X, Y, Left, Right, Left1, insert_out(X, Left, Left1)) → insert_out(X, tree(Y, Left, Right), tree(Y, Left1, Right))
U4(X, Y, Left, Right, Right1, insert_out(X, Right, Right1)) → insert_out(X, tree(Y, Left, Right), tree(Y, Left, Right1))

The argument filtering Pi contains the following mapping:
insert_in(x1, x2, x3)  =  insert_in(x1, x2)
tree(x1, x2, x3)  =  tree(x1, x2, x3)
U3(x1, x2, x3, x4, x5, x6)  =  U3(x1, x2, x3, x4, x6)
less_in(x1, x2)  =  less_in(x1, x2)
s(x1)  =  s(x1)
U5(x1, x2, x3)  =  U5(x3)
0  =  0
less_out(x1, x2)  =  less_out
U4(x1, x2, x3, x4, x5, x6)  =  U4(x2, x3, x6)
U1(x1, x2, x3, x4, x5, x6)  =  U1(x1, x2, x3, x4, x6)
U2(x1, x2, x3, x4, x5, x6)  =  U2(x2, x4, x6)
insert_out(x1, x2, x3)  =  insert_out(x3)
void  =  void
INSERT_IN(x1, x2, x3)  =  INSERT_IN(x1, x2)
U11(x1, x2, x3, x4, x5, x6)  =  U11(x1, x2, x3, x4, x6)
U31(x1, x2, x3, x4, x5, x6)  =  U31(x1, x2, x3, x4, x6)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof

Pi DP problem:
The TRS P consists of the following rules:

INSERT_IN(X, tree(Y, Left, Right), tree(Y, Left, Right1)) → U31(X, Y, Left, Right, Right1, less_in(Y, X))
U31(X, Y, Left, Right, Right1, less_out(Y, X)) → INSERT_IN(X, Right, Right1)
INSERT_IN(X, tree(Y, Left, Right), tree(Y, Left1, Right)) → U11(X, Y, Left, Right, Left1, less_in(X, Y))
U11(X, Y, Left, Right, Left1, less_out(X, Y)) → INSERT_IN(X, Left, Left1)

The TRS R consists of the following rules:

less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))

The argument filtering Pi contains the following mapping:
tree(x1, x2, x3)  =  tree(x1, x2, x3)
less_in(x1, x2)  =  less_in(x1, x2)
s(x1)  =  s(x1)
U5(x1, x2, x3)  =  U5(x3)
0  =  0
less_out(x1, x2)  =  less_out
INSERT_IN(x1, x2, x3)  =  INSERT_IN(x1, x2)
U11(x1, x2, x3, x4, x5, x6)  =  U11(x1, x2, x3, x4, x6)
U31(x1, x2, x3, x4, x5, x6)  =  U31(x1, x2, x3, x4, x6)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

INSERT_IN(X, tree(Y, Left, Right)) → U11(X, Y, Left, Right, less_in(X, Y))
U11(X, Y, Left, Right, less_out) → INSERT_IN(X, Left)
U31(X, Y, Left, Right, less_out) → INSERT_IN(X, Right)
INSERT_IN(X, tree(Y, Left, Right)) → U31(X, Y, Left, Right, less_in(Y, X))

The TRS R consists of the following rules:

less_in(s(X), s(Y)) → U5(less_in(X, Y))
less_in(0, s(X)) → less_out
U5(less_out) → less_out

The set Q consists of the following terms:

less_in(x0, x1)
U5(x0)

We have to consider all (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: