↳ Prolog
↳ PrologToPiTRSProof
insert_in(X, tree(Y, Left, Right), tree(Y, Left, Right1)) → U3(X, Y, Left, Right, Right1, less_in(Y, X))
less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U3(X, Y, Left, Right, Right1, less_out(Y, X)) → U4(X, Y, Left, Right, Right1, insert_in(X, Right, Right1))
insert_in(X, tree(Y, Left, Right), tree(Y, Left1, Right)) → U1(X, Y, Left, Right, Left1, less_in(X, Y))
U1(X, Y, Left, Right, Left1, less_out(X, Y)) → U2(X, Y, Left, Right, Left1, insert_in(X, Left, Left1))
insert_in(X, tree(X, Left, Right), tree(X, Left, Right)) → insert_out(X, tree(X, Left, Right), tree(X, Left, Right))
insert_in(X, void, tree(X, void, void)) → insert_out(X, void, tree(X, void, void))
U2(X, Y, Left, Right, Left1, insert_out(X, Left, Left1)) → insert_out(X, tree(Y, Left, Right), tree(Y, Left1, Right))
U4(X, Y, Left, Right, Right1, insert_out(X, Right, Right1)) → insert_out(X, tree(Y, Left, Right), tree(Y, Left, Right1))
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
insert_in(X, tree(Y, Left, Right), tree(Y, Left, Right1)) → U3(X, Y, Left, Right, Right1, less_in(Y, X))
less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U3(X, Y, Left, Right, Right1, less_out(Y, X)) → U4(X, Y, Left, Right, Right1, insert_in(X, Right, Right1))
insert_in(X, tree(Y, Left, Right), tree(Y, Left1, Right)) → U1(X, Y, Left, Right, Left1, less_in(X, Y))
U1(X, Y, Left, Right, Left1, less_out(X, Y)) → U2(X, Y, Left, Right, Left1, insert_in(X, Left, Left1))
insert_in(X, tree(X, Left, Right), tree(X, Left, Right)) → insert_out(X, tree(X, Left, Right), tree(X, Left, Right))
insert_in(X, void, tree(X, void, void)) → insert_out(X, void, tree(X, void, void))
U2(X, Y, Left, Right, Left1, insert_out(X, Left, Left1)) → insert_out(X, tree(Y, Left, Right), tree(Y, Left1, Right))
U4(X, Y, Left, Right, Right1, insert_out(X, Right, Right1)) → insert_out(X, tree(Y, Left, Right), tree(Y, Left, Right1))
INSERT_IN(X, tree(Y, Left, Right), tree(Y, Left, Right1)) → U31(X, Y, Left, Right, Right1, less_in(Y, X))
INSERT_IN(X, tree(Y, Left, Right), tree(Y, Left, Right1)) → LESS_IN(Y, X)
LESS_IN(s(X), s(Y)) → U51(X, Y, less_in(X, Y))
LESS_IN(s(X), s(Y)) → LESS_IN(X, Y)
U31(X, Y, Left, Right, Right1, less_out(Y, X)) → U41(X, Y, Left, Right, Right1, insert_in(X, Right, Right1))
U31(X, Y, Left, Right, Right1, less_out(Y, X)) → INSERT_IN(X, Right, Right1)
INSERT_IN(X, tree(Y, Left, Right), tree(Y, Left1, Right)) → U11(X, Y, Left, Right, Left1, less_in(X, Y))
INSERT_IN(X, tree(Y, Left, Right), tree(Y, Left1, Right)) → LESS_IN(X, Y)
U11(X, Y, Left, Right, Left1, less_out(X, Y)) → U21(X, Y, Left, Right, Left1, insert_in(X, Left, Left1))
U11(X, Y, Left, Right, Left1, less_out(X, Y)) → INSERT_IN(X, Left, Left1)
insert_in(X, tree(Y, Left, Right), tree(Y, Left, Right1)) → U3(X, Y, Left, Right, Right1, less_in(Y, X))
less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U3(X, Y, Left, Right, Right1, less_out(Y, X)) → U4(X, Y, Left, Right, Right1, insert_in(X, Right, Right1))
insert_in(X, tree(Y, Left, Right), tree(Y, Left1, Right)) → U1(X, Y, Left, Right, Left1, less_in(X, Y))
U1(X, Y, Left, Right, Left1, less_out(X, Y)) → U2(X, Y, Left, Right, Left1, insert_in(X, Left, Left1))
insert_in(X, tree(X, Left, Right), tree(X, Left, Right)) → insert_out(X, tree(X, Left, Right), tree(X, Left, Right))
insert_in(X, void, tree(X, void, void)) → insert_out(X, void, tree(X, void, void))
U2(X, Y, Left, Right, Left1, insert_out(X, Left, Left1)) → insert_out(X, tree(Y, Left, Right), tree(Y, Left1, Right))
U4(X, Y, Left, Right, Right1, insert_out(X, Right, Right1)) → insert_out(X, tree(Y, Left, Right), tree(Y, Left, Right1))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
INSERT_IN(X, tree(Y, Left, Right), tree(Y, Left, Right1)) → U31(X, Y, Left, Right, Right1, less_in(Y, X))
INSERT_IN(X, tree(Y, Left, Right), tree(Y, Left, Right1)) → LESS_IN(Y, X)
LESS_IN(s(X), s(Y)) → U51(X, Y, less_in(X, Y))
LESS_IN(s(X), s(Y)) → LESS_IN(X, Y)
U31(X, Y, Left, Right, Right1, less_out(Y, X)) → U41(X, Y, Left, Right, Right1, insert_in(X, Right, Right1))
U31(X, Y, Left, Right, Right1, less_out(Y, X)) → INSERT_IN(X, Right, Right1)
INSERT_IN(X, tree(Y, Left, Right), tree(Y, Left1, Right)) → U11(X, Y, Left, Right, Left1, less_in(X, Y))
INSERT_IN(X, tree(Y, Left, Right), tree(Y, Left1, Right)) → LESS_IN(X, Y)
U11(X, Y, Left, Right, Left1, less_out(X, Y)) → U21(X, Y, Left, Right, Left1, insert_in(X, Left, Left1))
U11(X, Y, Left, Right, Left1, less_out(X, Y)) → INSERT_IN(X, Left, Left1)
insert_in(X, tree(Y, Left, Right), tree(Y, Left, Right1)) → U3(X, Y, Left, Right, Right1, less_in(Y, X))
less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U3(X, Y, Left, Right, Right1, less_out(Y, X)) → U4(X, Y, Left, Right, Right1, insert_in(X, Right, Right1))
insert_in(X, tree(Y, Left, Right), tree(Y, Left1, Right)) → U1(X, Y, Left, Right, Left1, less_in(X, Y))
U1(X, Y, Left, Right, Left1, less_out(X, Y)) → U2(X, Y, Left, Right, Left1, insert_in(X, Left, Left1))
insert_in(X, tree(X, Left, Right), tree(X, Left, Right)) → insert_out(X, tree(X, Left, Right), tree(X, Left, Right))
insert_in(X, void, tree(X, void, void)) → insert_out(X, void, tree(X, void, void))
U2(X, Y, Left, Right, Left1, insert_out(X, Left, Left1)) → insert_out(X, tree(Y, Left, Right), tree(Y, Left1, Right))
U4(X, Y, Left, Right, Right1, insert_out(X, Right, Right1)) → insert_out(X, tree(Y, Left, Right), tree(Y, Left, Right1))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
LESS_IN(s(X), s(Y)) → LESS_IN(X, Y)
insert_in(X, tree(Y, Left, Right), tree(Y, Left, Right1)) → U3(X, Y, Left, Right, Right1, less_in(Y, X))
less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U3(X, Y, Left, Right, Right1, less_out(Y, X)) → U4(X, Y, Left, Right, Right1, insert_in(X, Right, Right1))
insert_in(X, tree(Y, Left, Right), tree(Y, Left1, Right)) → U1(X, Y, Left, Right, Left1, less_in(X, Y))
U1(X, Y, Left, Right, Left1, less_out(X, Y)) → U2(X, Y, Left, Right, Left1, insert_in(X, Left, Left1))
insert_in(X, tree(X, Left, Right), tree(X, Left, Right)) → insert_out(X, tree(X, Left, Right), tree(X, Left, Right))
insert_in(X, void, tree(X, void, void)) → insert_out(X, void, tree(X, void, void))
U2(X, Y, Left, Right, Left1, insert_out(X, Left, Left1)) → insert_out(X, tree(Y, Left, Right), tree(Y, Left1, Right))
U4(X, Y, Left, Right, Right1, insert_out(X, Right, Right1)) → insert_out(X, tree(Y, Left, Right), tree(Y, Left, Right1))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
LESS_IN(s(X), s(Y)) → LESS_IN(X, Y)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
LESS_IN(s(X), s(Y)) → LESS_IN(X, Y)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
INSERT_IN(X, tree(Y, Left, Right), tree(Y, Left, Right1)) → U31(X, Y, Left, Right, Right1, less_in(Y, X))
U31(X, Y, Left, Right, Right1, less_out(Y, X)) → INSERT_IN(X, Right, Right1)
INSERT_IN(X, tree(Y, Left, Right), tree(Y, Left1, Right)) → U11(X, Y, Left, Right, Left1, less_in(X, Y))
U11(X, Y, Left, Right, Left1, less_out(X, Y)) → INSERT_IN(X, Left, Left1)
insert_in(X, tree(Y, Left, Right), tree(Y, Left, Right1)) → U3(X, Y, Left, Right, Right1, less_in(Y, X))
less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U3(X, Y, Left, Right, Right1, less_out(Y, X)) → U4(X, Y, Left, Right, Right1, insert_in(X, Right, Right1))
insert_in(X, tree(Y, Left, Right), tree(Y, Left1, Right)) → U1(X, Y, Left, Right, Left1, less_in(X, Y))
U1(X, Y, Left, Right, Left1, less_out(X, Y)) → U2(X, Y, Left, Right, Left1, insert_in(X, Left, Left1))
insert_in(X, tree(X, Left, Right), tree(X, Left, Right)) → insert_out(X, tree(X, Left, Right), tree(X, Left, Right))
insert_in(X, void, tree(X, void, void)) → insert_out(X, void, tree(X, void, void))
U2(X, Y, Left, Right, Left1, insert_out(X, Left, Left1)) → insert_out(X, tree(Y, Left, Right), tree(Y, Left1, Right))
U4(X, Y, Left, Right, Right1, insert_out(X, Right, Right1)) → insert_out(X, tree(Y, Left, Right), tree(Y, Left, Right1))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
INSERT_IN(X, tree(Y, Left, Right), tree(Y, Left, Right1)) → U31(X, Y, Left, Right, Right1, less_in(Y, X))
U31(X, Y, Left, Right, Right1, less_out(Y, X)) → INSERT_IN(X, Right, Right1)
INSERT_IN(X, tree(Y, Left, Right), tree(Y, Left1, Right)) → U11(X, Y, Left, Right, Left1, less_in(X, Y))
U11(X, Y, Left, Right, Left1, less_out(X, Y)) → INSERT_IN(X, Left, Left1)
less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(X)) → less_out(0, s(X))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
INSERT_IN(X, tree(Y, Left, Right)) → U11(X, Y, Left, Right, less_in(X, Y))
U11(X, Y, Left, Right, less_out) → INSERT_IN(X, Left)
U31(X, Y, Left, Right, less_out) → INSERT_IN(X, Right)
INSERT_IN(X, tree(Y, Left, Right)) → U31(X, Y, Left, Right, less_in(Y, X))
less_in(s(X), s(Y)) → U5(less_in(X, Y))
less_in(0, s(X)) → less_out
U5(less_out) → less_out
less_in(x0, x1)
U5(x0)
From the DPs we obtained the following set of size-change graphs: